Essential Vocabulary

- Allele: an alternate form of a gene; for example, a gene for human hair color may have alleles that cause red or brown hair
- Chromosome: a cell structure that contains genetic information along strands of DNA
- DNA fingerprint: pattern of DNA fragments obtained by examining a person's unique sequence of DNA base pairs (also called DNA profiling)
- Electrophoresis: a method of separating molecules, such as DNA, according to their size and electrical charge using an electric current passed through a gel containing the samples
- Gene: segment of DNA in a chromosome that contains information used to produce a protein or an RNA molecule

Q: What is DNA Evidence?

- Because each human is unique, DNA evidence from a crime scene or from an unidentified body can be traced back to one and only one person.
 - Except for identical twins, no two people on earth have the same DNA (deoxyribonucleic acid).
- DNA evidence can be used to:
 - Link a suspect to a crime or to eliminate a suspect.
 - Identify a victim, even when no body can be found.
 - Identify human remains of victims of large-scale disasters, such as plane crashes, tsunamis, and hurricanes.

Q: What is the history of DNA Evidence?

- Many scientists worked to determine the source of heredity
 - Heredity: the passing of traits from parent to offspring
- How are these traits passed on?
 - First scientists determined that chromosomes controlled heredity and are made of DNA and proteins
 - Then scientists determined that DNA was the chemical that controlled characteristics (traits) of the organisms
 - Then the race was on to reveal the chemical structure of the DNA molecule

Q: What is the history of DNA Evidence?

- Several types of biological evidence, such as skin, blood, saliva, urine, semen, and hair, are used in forensics for identification purposes.
- Biological evidence is examined for the presence of inherited traits, such as blood type or enzyme variants.
 - The analysis of chromosomes = karyotyping.
 - Blood-typing techniques = common in forensics.

Q: What is the history of DNA Evidence?

• **DNA fingerprinting** = DNA profiling

- Used in criminal and legal cases to determine identity or parentage.
- DNA can be extracted from relatively small amounts of biological evidence, such as a drop of blood or a single hair follicle.
- When DNA fingerprinting is performed and interpreted by qualified forensic scientists, the results can very accurately predict whether an individual can be linked to a crime scene or excluded as a suspect.

- DNA stands for deoxyribonucleic acid
- DNA is the blueprint of life. It codes for making proteins which determine traits.
 - DNA contains the instructions for making the proteins (called pigments) which give your eyes color.

- DNA is packaged into chromosomes
 - Found in the nucleus of eukaryotic cells
 - Composed of two strands of DNA wrapped around proteins and coiled tightly
 - The Double Helix or Twisted Ladder

- The building blocks of DNA are called nucleotides. A nucleotide consists of three parts:
 - A sugar (named deoxyribose)
 - A phosphate group.
 - A nitrogen base

- The sides of the ladder are made of sugar and phosphate. The rungs of the ladder are the nitrogen base pairs.
- The nucleotides are arranged into two strands that are held together by weak hydrogen bonds between the nitrogen bases.
- The nitrogen bases bond in a specific way
 - Adenine Thymine (A-T)
 - Guanine Cytosine (G-C)
 - This pattern is called complementary base pairing

Complementary base pairing

 If the order of the bases in a section of one strand of DNA is CGTCTA, then the order of bases in the complementary section of DNA in the other strand is GCAGAT

Try transcribing this DNA strand:

TAGACTTAATG

ATCTGAATTAC

- There are 23 pairs (46 total) chromosomes in the nucleus of most human body cells
 - Exception = human gamete (sex) cells
- One chromosome in each pair is inherited from the mother; one from the father
 - This means that half of an individuals nuclear genetic information comes from each parent

DNA in chromosomes = nuclear DNA

- Virtually identical to all cells of the human body
- Codes for most proteins made by the cell and responsible for the inheritance of physical traits and genetic disorders
 - I.e., hair color, dimples, sickle cell anemia, Tay-Sachs disease

- Locus: the specific location of a gene or DNA sequence on a chromosome
- Genes: DNA sequences that have instructions that determine our inherited traits (i.e., blood type)
 - Make another type of nucleic acid called RNA
- Allele: a variant of a DNA sequence at a given locus; determines someone's genotype (genetic make-up)
 - Example: one allele of a gene might code for normal hemoglobin while another allele code for abnormal hemoglobin
 - One allele comes from mom; the other comes from dad

- Each chromosome contains many genes.
 - Genes are DNA sequences that have instructions
 that det '' '' ' ' tics or traits,

such as

- An allele is one of two or more alternative forms of a gene
 - One allele comes
 from the mother,
 and the other allele
 comes from the
 father.

